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U S A Mathematical Talent Search

PROBLEMS / SOLUTIONS / COMMENTS
Round 3 - Year 10 - Academic Year 1998-99

Gene A. Berg <gaberg@ieee.org>, Editor

1/3/10. Determine the leftmost three digits of the number

.

Solution 1 by Jason Oh (11/MD):The leftmost three numbers of this sum are 100. To prove t

I will show that the only term that contributes to the leftmost three digits is the 10001000  term.
The way to see this is by considering the series

Without much consideration, this series can be seen to add up to

In this series the terms from 10001  to 1000999  have no effect on the three leftmost digits.  In th

original series, the sum of the terms from 11 to 999999 will be smaller than the sum of the terms

10001 to 1000999 in the second series since each term is smaller and the original series is d
nated by the second series. Thus in the original series, the first 999 terms will also not cont
to the leftmost three digits of the sum.  The leftmost three terms of the sum come from the

10001000   term, and are therefore 100.

Solution 2 by Marcus Aaron (10/TX): Setting

it is clear that

or thatx is between 1000000... and 100100100... .  Since both these numbers have exactly
digits, the first three digits ofx must be 100.

Editor’s comment: Thanks are due to Professor Gregory Galperin of Eastern Illinois Univers
for this nice problem.

2/3/10. There are infinitely many ordered pairs  of positive integers for which the sum

is equal to the product . The four pairs with the smallest values ofmare(1, 1), (3, 6), (15,
35), and(85, 204).  Find three more(m, n)pairs.
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Solution 1 by Lucy Jiang (12/MD): The equation can be rewritten as:

,

which simplifies to

.
Although 0 is not a positive integer, it can be used in determining a pattern form andn because

.

Suppose , , , and so on.  We observe th

, as shown below:

Using this pattern, the next value forn is .  Substitutingn into the equation

, we obtain .  Thus the ordered pair is(493, 1189), and
this works.

By the same method, two other ordered pairs are:(2871, 6930)and(16731, 40391).

Solution 2 by Trevor Bass (12/NY): Using the fact that the sum ,

where i is an integer, we can rewrite the equation

as

,

so

.
In order form to be an integer, the discriminant of this quadratic equation must be the square
integer, so

,
where i is an arbitrary integer.  This equation can be rewritten as

.
The first seven values ofn for which there existi’s are: 1, 6, 35, 204, 1189, 6930, and 40391. Fo
eachn, the correspondingm can be computed by solving the quadratic equation

.  The first fourn’s are given in the problem statement, so the
next three(n, m) pairs are(493, 1189), (2871, 6930), and(16731, 40391).
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Solution 3 by David Walker (11/NE): The expression  can be

written . Set this equal tomnand obtain . If you

put 1, 3, 15, or 85 in form in this equation, you get two solutions for eachm. The solutions for 1
are 1 and 0.  The solutions for 3 are 6 and -1.  The solutions for 15 are 35 and -6, and for 8
204 and -35. I noticed the pattern that the solution to anm that is negative is the positive solution
to the previousmvalue. So I put -204 into the equation and got 493. Then I put -493 back in
m and got 1189.  I continued doing this  and got the three(m, n) pairs(493, 1189), (2871, 6930),
and(16731, 4039).

Solution 4 by Oaz Nir (10/CA): Three pairs are:(m, n)= (493, 1189), (2871, 6930), and(16731,
40391).

Claim:  If (m, n) is a solution, then(2n + m, 5n + 2m - 1)also is.

Using this claim, we easily recursively compute the three pairs above.  Starting with the giv
solution (85, 204), we use the transformation three times in s
cession.

To prove the claim, we first use the arithmetic series sum formula to transform the given equ
into the following equivalent form:

(sum of the first and last terms)(number of terms)/2 = mn
.

Now we see that  is a solution if

.
That is, if(m, n) is a solution then(2n + m, 5n + 2m - 1)is also a solution.

Solution 5 by Reid Barton (10/MA):  Answer:(493, 1189), (2871, 6930), and(16731, 40391).

Since , we want to findm andn such
that

.

We have

.
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This is Pell’s equation with primitive solution (3,1), so its solutions are given by

 for .  Fork = 1, 2, 3, and 4 we obtain(t, n) = (3, 1), (17, 6), (99, 35),
(577, 204), which give(m, n)= (1, 1), (3, 6), (15, 35), (85, 204) respectively, asm = (t-2n +1)/2.
Lettingk = 5, 6, and 7 gives(t, n)= (3363, 1189), (19601, 6930), and (114243, 40391), which
give (m, n)= (493, 1189), (2871, 6930), (16731, 40391), three more solutions to the original e
tion.

Solution 6 by Mike Fliss (12/NJ): The sum on the left side of the equation (the sum of the in
gers fromm to n) can be rewritten as  since this is the number of terms
times the average term.  We have

Now, in  form, this is

We use the quadratic formula to obtain solutions forn.  We want positive solutions forn.  For all

, observe that , so we do not consider the , just the + in the
quadratic formula to get positive values forn.  So

Set

Sincem andn are integers, by the additive closure of the integers,k is also an integer.
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where  and .  This is Pell’s equation, solvable by a continued fraction

expansion of , because

.

Continued fraction expansion yields fractions  (s/r).  If (s, r) is a solution to the equation

, then the following argument shows that (s+2r, s+r) is also a solution:

Therefore, the sequence of fractional expansions follows this form:

, , ...

Thus, the answers for the (s/r) expansion are

BUT, these are the answers for +1 and -1; we only want solutions for -1. Therefore, we take
other term.

Since the bottom number corresponds tor, and2m-1 = r, we get themvalues (first 7) in the table

below.  Plugging thesem’s back into the original , we get the cor

respondingn’s.

Three new pairs (m, n) are listed in bold in the table.

Editor’s comment:  We are indebted to Professor Suresh T. Thaker of India for this excellen
problem.

1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243 27580

1 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 19502

1 7 41 239 1393 8119 47321 275807

1 5 29 169 985 5741 33461 195025

m 1 3 15 85 493 2871 16731

n 1 6 35 204 1189 6930 40391
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3/3/10. The integers from 1 to 9 can be arranged into a array (as shown
on the right) so that the sum of the numbers in every row, column, and diag-
onal is a multiple of 9.
(a.) Prove that the number in the center of the array must be a multiple of 3.
(b.)  Give an example of such an array with 6 in the center.

Solution 1 by Rachel Johnson (9/MN):  (a) There are nine possible combina-
tions of three distinct numbers from 1 to 9 that have a sum of 9 or 18 (multiples of 9). They
{1, 2, 6} and {2, 3, 4} have a sum of 9, while {1, 8, 9}, {2, 7, 9}, {3, 6, 9}, {3, 7, 8}, {4, 5, 9}, and
{4, 6, 8} have a sum of 18. These combinations have either one or three multiples of 3 in e
them.

Since all possible combinations have a multiple of 3 and there are only three
multiples of 3, the multiples of 3 must be shared. This can be done by placing
two (of 3, 6, and 9) in opposite corners.  This provides a multiple of 3 for the
four outside combinations.  To provide a multiple of three for the other combi-
nations, the remaining multiple of 3 would have to be placed in the center.

(b) At the right is a possible arrangement of the array with 6 in the middle.

Solution 2 by Michelle Rengarajan (8/CA):  (a) According to the given information:
1) A + B + C = 9k1
2) D + E + F = 9k2
3) G + H + I = 9k3
4) A + D + G = 9k4
5) B + E + H = 9k5
6) C + F + I = 9k6
7) A + E + I = 9k7
8) C + E + G = 9k8
Solve for E in equations 2, 7, and 8.

E = 9k2 -(D + F)
E = 9k7  -(A + I)
E = 9k8  -(C + G)

Add these three equations together to find the value of 3E:
3E = 9k2 + 9k7 + 9k8 -(A + D + G + C + F + I).

So, according to equations 4 and 6
3E = 9k2 + 9k7 + 9k8 - 9k4 - 9k6.

Therefore, 3E is a multiple of 9, so E must be a multiple of 3.

(b) An array with 6 in the middle is shown on the right.

Editor’s comment:  This clever problem was posed by Dr. Erin Schram of the National Secu
Agency.  He claims there are 24 possible arrays for part (b), all of which are rotations or re
tions of one of the three arrays shown above.

A B C

D E F

G H I

3 3×

9 1 8

5 6 7

4 2 3

1 8 9

5 6 7

3 4 2

7 8 3

2 6 1

9 4 5



4/3/10. Prove that if , then

.

Solution 1 by Lucy Jin (11/MI): (Proof by contradiction.)

The last expression is equivalent to the original trigonometric expression.

Now we begin the proof by contradiction.  Assume

.

We show that this assumption leads to a contradiction, and therefore must be false.

Let .  The inequality above can be written
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Observe is always positive. Therefore , so and eith

or .         Recall , so

.

Both these cases are contradictory, because .

Therefore, our assumption was false and we must have

.

and .

Solution 2 by Mark Tong (12/VA):  This proof makes extensive use of the Arithmetic Mean-
Geometric Mean (AM-GM) Inequality, which states that for positive numbersa andb,

. For the first step of the proof, substitute into AM-GM with an

.  So

.

Using this new equation and substituting into AM-GM again with  and

.
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.
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5/3/10. In the figure on the right,O is the center
of the circle,OK andOA are perpendicular to
one another,M is the midpoint ofOK, BN is
parallel to OK, and .

Determine the measure of   in degrees.

Solution by Chi-Bong Chan (12/NJ): For conve-
nience and without loss of generality let the radius
of the circle be 2.  ThenOM = 1,OA = 2, and the

Pythagorean Theorem gives .  The
angle bisector theorem givesMO/MA = NO/NA.
Rewrite as

.

SinceAN + NO = OA = OB, we have

.

If we reflectO overBN  to getO’, then .

This is the golden mean, and one interest-
ing fact involving the golden mean is that
the ratio of the side to the diagonal of a
regular pentagon is the golden mean.

Proof of the fact:  Keep in mind that

1) because it is a regular pentagon, the five
arcs are equal, and

2) an angle subtending an arc has one-half
the measure of the arc.

We shall first show that each diagonal is
parallel to the opposite side, for example
in the diagram of the regular pentagon
below, .  We have

,

and .

Now  follows directly from the fact that  and  are complementary.
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ABN∠

MA 5=
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MA MO+
------------------------- NO

NA NO+
-----------------------=

NO
OB
-------- MO

MA MO+
------------------------- 1

5 1+
---------------- 5 1–

4
----------------= = =

OO′
OB
---------- 2NO

OB
------------ 5 1–

2
----------------= =

A

B

K O

N

M

O’

AD BC||
ADC∠ arcAC( ) 2⁄ 2 5⁄( ) 360°( )( ) 2⁄ 72°= = =

BCD∠ arcBAD( ) 2⁄ 3 5⁄( ) 360°( )( ) 2⁄ 108°= = =

AD BC|| ADC∠ BCD∠
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 Now, without loss of generality, letx be the length of a
side and 1 be the length of a diagonal, so that their ratio
simply x.   Since each diagonal is parallel to the opposit
side,AFDE is a parallelogram, and thereforeDF = AB =
x.  Moreover, since ,  and

.  Therefore, , so

.  That means

  or , which has thegolden
mean as the positive root, as desired.  This completes th
proof of the fact.

Back to our problem, we see thatOBO’
would be similar toDAC in the pentagon
because their sides are proportional
(OO’/BOandDC/DAare both equal to the
golden mean, and both triangles are isosce-
les). Therefore of the

pentagon, and so from the
earlier calculation.

Finally, to find , reflectB across
AO to getB’.  Then

because an angle subtending an arc has
half the measure of the arc.  Since  is

the image of  under the reflection,

we have at last .

Editor’s comment:  Again we thank Professor Gregory Galperin of Eastern Illinois Universit
for this, his second beautiful problem included in this round.
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